spec:
  disable_auto_mount: false
  command: ''
  entry_points:
    show_values_on_bars:
      parameters:
      - name: axs
      - name: h_v
        default: v
      - name: space
        default: 0.4
      name: show_values_on_bars
      lineno: 43
      has_kwargs: false
      has_varargs: false
      doc: ''
    plot_stat:
      parameters:
      - name: context
      - name: stat_name
      - name: stat_df
      name: plot_stat
      lineno: 65
      has_kwargs: false
      has_varargs: false
      doc: ''
    feature_selection:
      parameters:
      - name: context
        doc: the function context.
      - name: df_artifact
        doc: dataframe to pass as input.
      - name: k
        type: int
        doc: number of top features to select from each statistical function or model.
        default: 5
      - name: min_votes
        type: float
        doc: minimal number of votes (from a model or by statistical function) needed
          for a feature to be selected. Can be specified by percentage of votes or
          absolute number of votes.
        default: 0.5
      - name: label_column
        type: str
        doc: ground-truth (y) labels.
        default: null
      - name: stat_filters
        type: list
        doc: statistical functions to apply to the features (from sklearn.feature_selection).
        default: null
      - name: model_filters
        type: dict
        doc: models to use for feature evaluation, can be specified by model name
          (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a
          path to such json file.
        default: null
      - name: max_scaled_scores
        type: bool
        doc: produce feature scores table scaled with max_scaler.
        default: true
      - name: sample_ratio
        type: float
        doc: percentage of the dataset the user wishes to compute the feature selection
          process on.
        default: null
      - name: output_vector_name
        type: float
        doc: creates a new feature vector containing only the identifies features.
        default: null
      - name: ignore_type_errors
        type: bool
        doc: skips datatypes that are neither float nor int within the feature vector.
        default: false
      name: feature_selection
      lineno: 80
      has_kwargs: false
      has_varargs: false
      doc: 'Applies selected feature selection statistical functions or models on
        our ''df_artifact''.


        Each statistical function or model will vote for it''s best K selected features.

        If a feature has >= ''min_votes'' votes, it will be selected.'
  image: mlrun/mlrun
  build:
    origin_filename: ''
    functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IGpzb24KCmltcG9ydCBtbHJ1bgppbXBvcnQgbWxydW4uZGF0YXN0b3JlCmltcG9ydCBtbHJ1bi5mZWF0dXJlX3N0b3JlIGFzIGZzCmltcG9ydCBtbHJ1bi51dGlscwppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcGxvdGx5LmV4cHJlc3MgYXMgcHgKZnJvbSBtbHJ1bi5hcnRpZmFjdHMgaW1wb3J0IFBsb3RseUFydGlmYWN0CmZyb20gbWxydW4uZGF0YXN0b3JlLnRhcmdldHMgaW1wb3J0IFBhcnF1ZXRUYXJnZXQKIyBNTFJ1biB1dGlscwpmcm9tIG1scnVuLnV0aWxzLmhlbHBlcnMgaW1wb3J0IGNyZWF0ZV9jbGFzcwojIEZlYXR1cmUgc2VsZWN0aW9uIHN0cmF0ZWdpZXMKZnJvbSBza2xlYXJuLmZlYXR1cmVfc2VsZWN0aW9uIGltcG9ydCBTZWxlY3RGcm9tTW9kZWwsIFNlbGVjdEtCZXN0CiMgU2NhbGUgZmVhdHVyZSBzY29yZXNnaXQgc3QKZnJvbSBza2xlYXJuLnByZXByb2Nlc3NpbmcgaW1wb3J0IE1pbk1heFNjYWxlcgojIFNLTGVhcm4gZXN0aW1hdG9ycyBsaXN0CmZyb20gc2tsZWFybi51dGlscyBpbXBvcnQgYWxsX2VzdGltYXRvcnMKCkRFRkFVTFRfU1RBVF9GSUxURVJTID0gWyJmX2NsYXNzaWYiLCAibXV0dWFsX2luZm9fY2xhc3NpZiIsICJjaGkyIiwgImZfcmVncmVzc2lvbiJdCkRFRkFVTFRfTU9ERUxfRklMVEVSUyA9IHsKICAgICJMaW5lYXJTVkMiOiAiTGluZWFyU1ZDIiwKICAgICJMb2dpc3RpY1JlZ3Jlc3Npb24iOiAiTG9naXN0aWNSZWdyZXNzaW9uIiwKICAgICJFeHRyYVRyZWVzQ2xhc3NpZmllciI6ICJFeHRyYVRyZWVzQ2xhc3NpZmllciIsCn0KCgpkZWYgc2hvd192YWx1ZXNfb25fYmFycyhheHMsIGhfdj0idiIsIHNwYWNlPTAuNCk6CiAgICBkZWYgX3Nob3dfb25fc2luZ2xlX3Bsb3QoYXhfKToKICAgICAgICBpZiBoX3YgPT0gInYiOgogICAgICAgICAgICBmb3IgcCBpbiBheF8ucGF0Y2hlczoKICAgICAgICAgICAgICAgIF94ID0gcC5nZXRfeCgpICsgcC5nZXRfd2lkdGgoKSAvIDIKICAgICAgICAgICAgICAgIF95ID0gcC5nZXRfeSgpICsgcC5nZXRfaGVpZ2h0KCkKICAgICAgICAgICAgICAgIHZhbHVlID0gaW50KHAuZ2V0X2hlaWdodCgpKQogICAgICAgICAgICAgICAgYXhfLnRleHQoX3gsIF95LCB2YWx1ZSwgaGE9ImNlbnRlciIpCiAgICAgICAgZWxpZiBoX3YgPT0gImgiOgogICAgICAgICAgICBmb3IgcCBpbiBheF8ucGF0Y2hlczoKICAgICAgICAgICAgICAgIF94ID0gcC5nZXRfeCgpICsgcC5nZXRfd2lkdGgoKSArIGZsb2F0KHNwYWNlKQogICAgICAgICAgICAgICAgX3kgPSBwLmdldF95KCkgKyBwLmdldF9oZWlnaHQoKQogICAgICAgICAgICAgICAgdmFsdWUgPSBpbnQocC5nZXRfd2lkdGgoKSkKICAgICAgICAgICAgICAgIGF4Xy50ZXh0KF94LCBfeSwgdmFsdWUsIGhhPSJsZWZ0IikKCiAgICBpZiBpc2luc3RhbmNlKGF4cywgbnAubmRhcnJheSk6CiAgICAgICAgZm9yIGlkeCwgYXggaW4gbnAubmRlbnVtZXJhdGUoYXhzKToKICAgICAgICAgICAgX3Nob3dfb25fc2luZ2xlX3Bsb3QoYXgpCiAgICBlbHNlOgogICAgICAgIF9zaG93X29uX3NpbmdsZV9wbG90KGF4cykKCgpkZWYgcGxvdF9zdGF0KGNvbnRleHQsIHN0YXRfbmFtZSwgc3RhdF9kZik6CiAgICBzb3J0ZWRfZGYgPSBzdGF0X2RmLnNvcnRfdmFsdWVzKHN0YXRfbmFtZSkKICAgIGZpZyA9IHB4LmJhcigKICAgICAgICBkYXRhX2ZyYW1lPXNvcnRlZF9kZiwKICAgICAgICB4PXN0YXRfbmFtZSwKICAgICAgICB5PXNvcnRlZF9kZi5pbmRleCwKICAgICAgICB0aXRsZT1mIntzdGF0X25hbWV9IGZlYXR1cmUgc2NvcmVzIiwKICAgICAgICBjb2xvcj1zdGF0X25hbWUsCiAgICApCiAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCgKICAgICAgICBpdGVtPVBsb3RseUFydGlmYWN0KGtleT1zdGF0X25hbWUsIGZpZ3VyZT1maWcpLAogICAgICAgIGxvY2FsX3BhdGg9ZiJ7c3RhdF9uYW1lfS5odG1sIiwKICAgICkKCgpkZWYgZmVhdHVyZV9zZWxlY3Rpb24oCiAgICBjb250ZXh0LAogICAgZGZfYXJ0aWZhY3QsCiAgICBrOiBpbnQgPSA1LAogICAgbWluX3ZvdGVzOiBmbG9hdCA9IDAuNSwKICAgIGxhYmVsX2NvbHVtbjogc3RyID0gTm9uZSwKICAgIHN0YXRfZmlsdGVyczogbGlzdCA9IE5vbmUsCiAgICBtb2RlbF9maWx0ZXJzOiBkaWN0ID0gTm9uZSwKICAgIG1heF9zY2FsZWRfc2NvcmVzOiBib29sID0gVHJ1ZSwKICAgIHNhbXBsZV9yYXRpbzogZmxvYXQgPSBOb25lLAogICAgb3V0cHV0X3ZlY3Rvcl9uYW1lOiBmbG9hdCA9IE5vbmUsCiAgICBpZ25vcmVfdHlwZV9lcnJvcnM6IGJvb2wgPSBGYWxzZSwKKToKICAgICIiIgogICAgQXBwbGllcyBzZWxlY3RlZCBmZWF0dXJlIHNlbGVjdGlvbiBzdGF0aXN0aWNhbCBmdW5jdGlvbnMgb3IgbW9kZWxzIG9uIG91ciAnZGZfYXJ0aWZhY3QnLgoKICAgIEVhY2ggc3RhdGlzdGljYWwgZnVuY3Rpb24gb3IgbW9kZWwgd2lsbCB2b3RlIGZvciBpdCdzIGJlc3QgSyBzZWxlY3RlZCBmZWF0dXJlcy4KICAgIElmIGEgZmVhdHVyZSBoYXMgPj0gJ21pbl92b3Rlcycgdm90ZXMsIGl0IHdpbGwgYmUgc2VsZWN0ZWQuCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0LgogICAgOnBhcmFtIGRmX2FydGlmYWN0OiAgICAgICAgIGRhdGFmcmFtZSB0byBwYXNzIGFzIGlucHV0LgogICAgOnBhcmFtIGs6ICAgICAgICAgICAgICAgICAgIG51bWJlciBvZiB0b3AgZmVhdHVyZXMgdG8gc2VsZWN0IGZyb20gZWFjaCBzdGF0aXN0aWNhbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bmN0aW9uIG9yIG1vZGVsLgogICAgOnBhcmFtIG1pbl92b3RlczogICAgICAgICAgIG1pbmltYWwgbnVtYmVyIG9mIHZvdGVzIChmcm9tIGEgbW9kZWwgb3IgYnkgc3RhdGlzdGljYWwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmdW5jdGlvbikgbmVlZGVkIGZvciBhIGZlYXR1cmUgdG8gYmUgc2VsZWN0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHNwZWNpZmllZCBieSBwZXJjZW50YWdlIG9mIHZvdGVzIG9yIGFic29sdXRlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbnVtYmVyIG9mIHZvdGVzLgogICAgOnBhcmFtIGxhYmVsX2NvbHVtbjogICAgICAgIGdyb3VuZC10cnV0aCAoeSkgbGFiZWxzLgogICAgOnBhcmFtIHN0YXRfZmlsdGVyczogICAgICAgIHN0YXRpc3RpY2FsIGZ1bmN0aW9ucyB0byBhcHBseSB0byB0aGUgZmVhdHVyZXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAoZnJvbSBza2xlYXJuLmZlYXR1cmVfc2VsZWN0aW9uKS4KICAgIDpwYXJhbSBtb2RlbF9maWx0ZXJzOiAgICAgICBtb2RlbHMgdG8gdXNlIGZvciBmZWF0dXJlIGV2YWx1YXRpb24sIGNhbiBiZSBzcGVjaWZpZWQgYnkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBuYW1lIChleC4gTGluZWFyU1ZDKSwgZm9ybWFsaXplZCBqc29uIChjb250YWlucyAnQ0xBU1MnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdGSVQnLCAnTUVUQScpIG9yIGEgcGF0aCB0byBzdWNoIGpzb24gZmlsZS4KICAgIDpwYXJhbSBtYXhfc2NhbGVkX3Njb3JlczogICBwcm9kdWNlIGZlYXR1cmUgc2NvcmVzIHRhYmxlIHNjYWxlZCB3aXRoIG1heF9zY2FsZXIuCiAgICA6cGFyYW0gc2FtcGxlX3JhdGlvOiAgICAgICAgcGVyY2VudGFnZSBvZiB0aGUgZGF0YXNldCB0aGUgdXNlciB3aXNoZXMgdG8gY29tcHV0ZSB0aGUgZmVhdHVyZSBzZWxlY3Rpb24gcHJvY2VzcyBvbi4KICAgIDpwYXJhbSBvdXRwdXRfdmVjdG9yX25hbWU6ICBjcmVhdGVzIGEgbmV3IGZlYXR1cmUgdmVjdG9yIGNvbnRhaW5pbmcgb25seSB0aGUgaWRlbnRpZmllcyBmZWF0dXJlcy4KICAgIDpwYXJhbSBpZ25vcmVfdHlwZV9lcnJvcnM6ICBza2lwcyBkYXRhdHlwZXMgdGhhdCBhcmUgbmVpdGhlciBmbG9hdCBub3IgaW50IHdpdGhpbiB0aGUgZmVhdHVyZSB2ZWN0b3IuCiAgICAiIiIKICAgIHN0YXRfZmlsdGVycyA9IHN0YXRfZmlsdGVycyBvciBERUZBVUxUX1NUQVRfRklMVEVSUwogICAgbW9kZWxfZmlsdGVycyA9IG1vZGVsX2ZpbHRlcnMgb3IgREVGQVVMVF9NT0RFTF9GSUxURVJTCiAgICAjIENoZWNrIGlmIGRmLm1ldGEgaXMgdmFsaWQsIGlmIGl0IGlzLCBsb29rIGZvciBhIGZlYXR1cmUgdmVjdG9yCiAgICBzdG9yZV91cmlfcHJlZml4LCBfID0gbWxydW4uZGF0YXN0b3JlLnBhcnNlX3N0b3JlX3VyaShkZl9hcnRpZmFjdC5hcnRpZmFjdF91cmwpCiAgICBpc19mZWF0dXJlX3ZlY3RvciA9IG1scnVuLnV0aWxzLlN0b3JlUHJlZml4LkZlYXR1cmVWZWN0b3IgPT0gc3RvcmVfdXJpX3ByZWZpeAoKICAgICMgTG9vayBpbnNpZGUgbWV0YS5zcGVjLmxhYmVsX2ZlYXR1cmUgdG8gaWRlbnRpZnkgdGhlIGxhYmVsX2NvbHVtbiBpZiB0aGUgdXNlciBkaWQgbm90IHNwZWNpZnkgaXQKICAgIGlmIGxhYmVsX2NvbHVtbiBpcyBOb25lOgogICAgICAgIGlmIGlzX2ZlYXR1cmVfdmVjdG9yOgogICAgICAgICAgICBsYWJlbF9jb2x1bW4gPSBkZl9hcnRpZmFjdC5tZXRhLnNwZWMubGFiZWxfZmVhdHVyZS5zcGxpdCgiLiIpWzFdCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcmFpc2UgVmFsdWVFcnJvcigiTm8gbGFiZWxfY29sdW1uIHdhcyBnaXZlbiwgcGxlYXNlIGFkZCBhIGxhYmVsX2NvbHVtbi4iKQoKICAgICMgVXNlIHRoZSBmZWF0dXJlIHZlY3RvciBhcyBkYXRhZnJhbWUKICAgIGRmID0gZGZfYXJ0aWZhY3QuYXNfZGYoKQoKICAgICMgRW5zdXJlIGsgaXMgbm90IGJpZ2dlciB0aGFuIHRoZSB0b3RhbCBudW1iZXIgb2YgZmVhdHVyZXMKICAgIGlmIGsgPiBkZi5zaGFwZVsxXToKICAgICAgICByYWlzZSBWYWx1ZUVycm9yKAogICAgICAgICAgICBmIksgY2Fubm90IGJlIGJpZ2dlciB0aGFuIHRoZSB0b3RhbCBudW1iZXIgb2YgZmVhdHVyZXMgKHtkZi5zaGFwZVsxXX0pLiBQbGVhc2UgY2hvb3NlIGEgc21hbGxlciBLLiIKICAgICAgICApCiAgICBlbGlmIGsgPCAxOgogICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIksgY2Fubm90IGJlIHNtYWxsZXIgdGhhbiAxLiBQbGVhc2UgY2hvb3NlIGEgYmlnZ2VyIEsuIikKCiAgICAjIENyZWF0ZSBhIHNhbXBsZSBkYXRhZnJhbWUgb2YgdGhlIG9yaWdpbmFsIGZlYXR1cmUgdmVjdG9yCiAgICBpZiBzYW1wbGVfcmF0aW86CiAgICAgICAgZGYgPSAoCiAgICAgICAgICAgIGRmLmdyb3VwYnkobGFiZWxfY29sdW1uKQogICAgICAgICAgICAuYXBwbHkobGFtYmRhIHg6IHguc2FtcGxlKGZyYWM9c2FtcGxlX3JhdGlvKSkKICAgICAgICAgICAgLnJlc2V0X2luZGV4KGRyb3A9VHJ1ZSkKICAgICAgICApCiAgICAgICAgZGYgPSBkZi5kcm9wbmEoKQoKICAgICMgU2V0IGZlYXR1cmUgdmVjdG9yIGFuZCBsYWJlbHMKICAgIHkgPSBkZi5wb3AobGFiZWxfY29sdW1uKQogICAgWCA9IGRmCgogICAgaWYgbnAub2JqZWN0XyBpbiBsaXN0KFguZHR5cGVzKSBhbmQgaWdub3JlX3R5cGVfZXJyb3JzIGlzIEZhbHNlOgogICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoCiAgICAgICAgICAgIGYie2RmLnNlbGVjdF9kdHlwZXMoaW5jbHVkZT1bJ29iamVjdCddKS5jb2x1bW5zLnRvbGlzdCgpfSBhcmUgbmVpdGhlciBmbG9hdCBvciBpbnQuIgogICAgICAgICkKCiAgICAjIENyZWF0ZSBzZWxlY3RlZCBzdGF0aXN0aWNhbCBlc3RpbWF0b3JzCiAgICBzdGF0X2Z1bmN0aW9uc19saXN0ID0gewogICAgICAgIHN0YXRfbmFtZTogU2VsZWN0S0Jlc3QoCiAgICAgICAgICAgIHNjb3JlX2Z1bmM9Y3JlYXRlX2NsYXNzKGYic2tsZWFybi5mZWF0dXJlX3NlbGVjdGlvbi57c3RhdF9uYW1lfSIpLCBrPWsKICAgICAgICApCiAgICAgICAgZm9yIHN0YXRfbmFtZSBpbiBzdGF0X2ZpbHRlcnMKICAgIH0KICAgIHJlcXVpcmVzX2FicyA9IFsiY2hpMiJdCgogICAgIyBSdW4gc3RhdGlzdGljIGZpbHRlcnMKICAgIHNlbGVjdGVkX2ZlYXR1cmVzX2FnZyA9IHt9CiAgICBzdGF0c19kZiA9IHBkLkRhdGFGcmFtZShpbmRleD1YLmNvbHVtbnMpLmRyb3BuYSgpCgogICAgZm9yIHN0YXRfbmFtZSwgc3RhdF9mdW5jIGluIHN0YXRfZnVuY3Rpb25zX2xpc3QuaXRlbXMoKToKICAgICAgICB0cnk6CiAgICAgICAgICAgIHBhcmFtcyA9IChYLCB5KSBpZiBzdGF0X25hbWUgaW4gcmVxdWlyZXNfYWJzIGVsc2UgKGFicyhYKSwgeSkKICAgICAgICAgICAgc3RhdCA9IHN0YXRfZnVuYy5maXQoKnBhcmFtcykKCiAgICAgICAgICAgICMgQ29sbGVjdCBzdGF0IGZ1bmN0aW9uIHJlc3VsdHMKICAgICAgICAgICAgc3RhdF9kZiA9IHBkLkRhdGFGcmFtZSgKICAgICAgICAgICAgICAgIGluZGV4PVguY29sdW1ucywgY29sdW1ucz1bc3RhdF9uYW1lXSwgZGF0YT1zdGF0LnNjb3Jlc18KICAgICAgICAgICAgKQogICAgICAgICAgICBwbG90X3N0YXQoY29udGV4dCwgc3RhdF9uYW1lLCBzdGF0X2RmKQogICAgICAgICAgICBzdGF0c19kZiA9IHN0YXRzX2RmLmpvaW4oc3RhdF9kZikKCiAgICAgICAgICAgICMgU2VsZWN0IEsgQmVzdCBmZWF0dXJlcwogICAgICAgICAgICBzZWxlY3RlZF9mZWF0dXJlcyA9IFguY29sdW1uc1tzdGF0X2Z1bmMuZ2V0X3N1cHBvcnQoKV0KICAgICAgICAgICAgc2VsZWN0ZWRfZmVhdHVyZXNfYWdnW3N0YXRfbmFtZV0gPSBzZWxlY3RlZF9mZWF0dXJlcwoKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIGNvbnRleHQubG9nZ2VyLmluZm8oZiJDb3VsZG4ndCBjYWxjdWxhdGUge3N0YXRfbmFtZX0gYmVjYXVzZSBvZjoge2V9IikKCiAgICAjIENyZWF0ZSBtb2RlbHMgZnJvbSBjbGFzcyBuYW1lIC8ganNvbiBmaWxlIC8ganNvbiBwYXJhbXMKICAgIGFsbF9za2xlYXJuX2VzdGltYXRvcnMgPSBkaWN0KGFsbF9lc3RpbWF0b3JzKCkpIGlmIGxlbihtb2RlbF9maWx0ZXJzKSA+IDAgZWxzZSB7fQogICAgc2VsZWN0ZWRfbW9kZWxzID0ge30KICAgIGZvciBtb2RlbF9uYW1lLCBtb2RlbCBpbiBtb2RlbF9maWx0ZXJzLml0ZW1zKCk6CiAgICAgICAgaWYgIi5qc29uIiBpbiBtb2RlbDoKICAgICAgICAgICAgY3VycmVudF9tb2RlbCA9IGpzb24ubG9hZChvcGVuKG1vZGVsLCAiciIpKQogICAgICAgICAgICBjbGFzc2lmaWVyX2NsYXNzID0gY3JlYXRlX2NsYXNzKGN1cnJlbnRfbW9kZWxbIk1FVEEiXVsiY2xhc3MiXSkKICAgICAgICAgICAgc2VsZWN0ZWRfbW9kZWxzW21vZGVsX25hbWVdID0gY2xhc3NpZmllcl9jbGFzcygqKmN1cnJlbnRfbW9kZWxbIkNMQVNTIl0pCiAgICAgICAgZWxpZiBtb2RlbCBpbiBhbGxfc2tsZWFybl9lc3RpbWF0b3JzOgogICAgICAgICAgICBzZWxlY3RlZF9tb2RlbHNbbW9kZWxfbmFtZV0gPSBhbGxfc2tsZWFybl9lc3RpbWF0b3JzW21vZGVsX25hbWVdKCkKCiAgICAgICAgZWxzZToKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgY3VycmVudF9tb2RlbCA9IGpzb24ubG9hZHMobW9kZWwpCiAgICAgICAgICAgICAgICBjbGFzc2lmaWVyX2NsYXNzID0gY3JlYXRlX2NsYXNzKGN1cnJlbnRfbW9kZWxbIk1FVEEiXVsiY2xhc3MiXSkKICAgICAgICAgICAgICAgIHNlbGVjdGVkX21vZGVsc1ttb2RlbF9uYW1lXSA9IGNsYXNzaWZpZXJfY2xhc3MoKipjdXJyZW50X21vZGVsWyJDTEFTUyJdKQogICAgICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYidW5hYmxlIHRvIGxvYWQge21vZGVsfSBiZWNhdXNlIG9mOiB7ZX0iKQoKICAgICMgUnVuIG1vZGVsIGZpbHRlcnMKICAgIG1vZGVsc19kZiA9IHBkLkRhdGFGcmFtZShpbmRleD1YLmNvbHVtbnMpCiAgICBmb3IgbW9kZWxfbmFtZSwgbW9kZWwgaW4gc2VsZWN0ZWRfbW9kZWxzLml0ZW1zKCk6CgogICAgICAgIGlmIG1vZGVsX25hbWUgPT0gIkxvZ2lzdGljUmVncmVzc2lvbiI6CiAgICAgICAgICAgIG1vZGVsLnNldF9wYXJhbXMoc29sdmVyPSJsaWJsaW5lYXIiKQoKICAgICAgICAjIFRyYWluIG1vZGVsIGFuZCBnZXQgZmVhdHVyZSBpbXBvcnRhbmNlCiAgICAgICAgc2VsZWN0X2Zyb21fbW9kZWwgPSBTZWxlY3RGcm9tTW9kZWwobW9kZWwpLmZpdChYLCB5KQogICAgICAgIGZlYXR1cmVfaWR4ID0gc2VsZWN0X2Zyb21fbW9kZWwuZ2V0X3N1cHBvcnQoKQogICAgICAgIGZlYXR1cmVfbmFtZXMgPSBYLmNvbHVtbnNbZmVhdHVyZV9pZHhdCiAgICAgICAgc2VsZWN0ZWRfZmVhdHVyZXNfYWdnW21vZGVsX25hbWVdID0gZmVhdHVyZV9uYW1lcy50b2xpc3QoKQoKICAgICAgICAjIENvbGxlY3QgbW9kZWwgZmVhdHVyZSBpbXBvcnRhbmNlCiAgICAgICAgaWYgaGFzYXR0cihzZWxlY3RfZnJvbV9tb2RlbC5lc3RpbWF0b3JfLCAiY29lZl8iKToKICAgICAgICAgICAgc3RhdF9kZiA9IHNlbGVjdF9mcm9tX21vZGVsLmVzdGltYXRvcl8uY29lZl8KICAgICAgICBlbGlmIGhhc2F0dHIoc2VsZWN0X2Zyb21fbW9kZWwuZXN0aW1hdG9yXywgImZlYXR1cmVfaW1wb3J0YW5jZXNfIik6CiAgICAgICAgICAgIHN0YXRfZGYgPSBzZWxlY3RfZnJvbV9tb2RlbC5lc3RpbWF0b3JfLmZlYXR1cmVfaW1wb3J0YW5jZXNfCgogICAgICAgIHN0YXRfZGYgPSBwZC5EYXRhRnJhbWUoaW5kZXg9WC5jb2x1bW5zLCBjb2x1bW5zPVttb2RlbF9uYW1lXSwgZGF0YT1zdGF0X2RmWzBdKQogICAgICAgIG1vZGVsc19kZiA9IG1vZGVsc19kZi5qb2luKHN0YXRfZGYpCgogICAgICAgIHBsb3Rfc3RhdChjb250ZXh0LCBtb2RlbF9uYW1lLCBzdGF0X2RmKQoKICAgICMgQ3JlYXRlIGZlYXR1cmVfc2NvcmVzIERGIHdpdGggc3RhdCAmIG1vZGVsIGZpbHRlcnMgc2NvcmVzCiAgICByZXN1bHRfbWF0cml4X2RmID0gcGQuY29uY2F0KFtzdGF0c19kZiwgbW9kZWxzX2RmXSwgYXhpcz0xLCBzb3J0PUZhbHNlKQogICAgY29udGV4dC5sb2dfZGF0YXNldCgKICAgICAgICBrZXk9ImZlYXR1cmVfc2NvcmVzIiwKICAgICAgICBkZj1yZXN1bHRfbWF0cml4X2RmLAogICAgICAgIGxvY2FsX3BhdGg9ImZlYXR1cmVfc2NvcmVzLnBhcnF1ZXQiLAogICAgICAgIGZvcm1hdD0icGFycXVldCIsCiAgICApCiAgICBpZiBtYXhfc2NhbGVkX3Njb3JlczoKICAgICAgICBub3JtYWxpemVkX2RmID0gcmVzdWx0X21hdHJpeF9kZi5yZXBsYWNlKFtucC5pbmYsIC1ucC5pbmZdLCBucC5uYW4pLnZhbHVlcwogICAgICAgIG1pbl9tYXhfc2NhbGVyID0gTWluTWF4U2NhbGVyKCkKICAgICAgICBub3JtYWxpemVkX2RmID0gbWluX21heF9zY2FsZXIuZml0X3RyYW5zZm9ybShub3JtYWxpemVkX2RmKQogICAgICAgIG5vcm1hbGl6ZWRfZGYgPSBwZC5EYXRhRnJhbWUoCiAgICAgICAgICAgIGRhdGE9bm9ybWFsaXplZF9kZiwKICAgICAgICAgICAgY29sdW1ucz1yZXN1bHRfbWF0cml4X2RmLmNvbHVtbnMsCiAgICAgICAgICAgIGluZGV4PXJlc3VsdF9tYXRyaXhfZGYuaW5kZXgsCiAgICAgICAgKQogICAgICAgIGNvbnRleHQubG9nX2RhdGFzZXQoCiAgICAgICAgICAgIGtleT0ibWF4X3NjYWxlZF9zY29yZXNfZmVhdHVyZV9zY29yZXMiLAogICAgICAgICAgICBkZj1ub3JtYWxpemVkX2RmLAogICAgICAgICAgICBsb2NhbF9wYXRoPSJtYXhfc2NhbGVkX3Njb3Jlc19mZWF0dXJlX3Njb3Jlcy5wYXJxdWV0IiwKICAgICAgICAgICAgZm9ybWF0PSJwYXJxdWV0IiwKICAgICAgICApCgogICAgIyBDcmVhdGUgZmVhdHVyZSBjb3VudCBEYXRhRnJhbWUKICAgIGZvciB0ZXN0X25hbWUgaW4gc2VsZWN0ZWRfZmVhdHVyZXNfYWdnOgogICAgICAgIHJlc3VsdF9tYXRyaXhfZGZbdGVzdF9uYW1lXSA9IFsKICAgICAgICAgICAgMSBpZiB4IGluIHNlbGVjdGVkX2ZlYXR1cmVzX2FnZ1t0ZXN0X25hbWVdIGVsc2UgMCBmb3IgeCBpbiBYLmNvbHVtbnMKICAgICAgICBdCiAgICByZXN1bHRfbWF0cml4X2RmLmxvY1s6LCAibnVtX3ZvdGVzIl0gPSByZXN1bHRfbWF0cml4X2RmLnN1bShheGlzPTEpCiAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgIGtleT0ic2VsZWN0ZWRfZmVhdHVyZXNfY291bnQiLAogICAgICAgIGRmPXJlc3VsdF9tYXRyaXhfZGYsCiAgICAgICAgbG9jYWxfcGF0aD0ic2VsZWN0ZWRfZmVhdHVyZXNfY291bnQucGFycXVldCIsCiAgICAgICAgZm9ybWF0PSJwYXJxdWV0IiwKICAgICkKCiAgICAjIEhvdyBtYW55IHZvdGVzIGFyZSBuZWVkZWQgZm9yIGEgZmVhdHVyZSB0byBiZSBzZWxlY3RlZD8KICAgIGlmIGlzaW5zdGFuY2UobWluX3ZvdGVzLCBpbnQpOgogICAgICAgIHZvdGVzX25lZWRlZCA9IG1pbl92b3RlcwogICAgZWxzZToKICAgICAgICBudW1fZmlsdGVycyA9IGxlbihzdGF0X2ZpbHRlcnMpICsgbGVuKG1vZGVsX2ZpbHRlcnMpCiAgICAgICAgdm90ZXNfbmVlZGVkID0gaW50KG5wLmZsb29yKG51bV9maWx0ZXJzICogbWF4KG1pbihtaW5fdm90ZXMsIDEpLCAwKSkpCiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYidm90ZXMgbmVlZGVkIHRvIGJlIHNlbGVjdGVkOiB7dm90ZXNfbmVlZGVkfSIpCgogICAgIyBDcmVhdGUgZmluYWwgZmVhdHVyZSBkYXRhZnJhbWUKICAgIHNlbGVjdGVkX2ZlYXR1cmVzID0gcmVzdWx0X21hdHJpeF9kZlsKICAgICAgICByZXN1bHRfbWF0cml4X2RmLm51bV92b3RlcyA+PSB2b3Rlc19uZWVkZWQKICAgIF0uaW5kZXgudG9saXN0KCkKICAgIGdvb2RfZmVhdHVyZV9kZiA9IGRmLmxvY1s6LCBzZWxlY3RlZF9mZWF0dXJlc10KICAgIGZpbmFsX2RmID0gcGQuY29uY2F0KFtnb29kX2ZlYXR1cmVfZGYsIHldLCBheGlzPTEpCiAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgIGtleT0ic2VsZWN0ZWRfZmVhdHVyZXMiLAogICAgICAgIGRmPWZpbmFsX2RmLAogICAgICAgIGxvY2FsX3BhdGg9InNlbGVjdGVkX2ZlYXR1cmVzLnBhcnF1ZXQiLAogICAgICAgIGZvcm1hdD0icGFycXVldCIsCiAgICApCgogICAgIyBDcmVhdGluZyBhIG5ldyBmZWF0dXJlIHZlY3RvciBjb250YWluaW5nIG9ubHkgdGhlIGlkZW50aWZpZWQgdG9wIGZlYXR1cmVzCiAgICBpZiBpc19mZWF0dXJlX3ZlY3RvciBhbmQgZGZfYXJ0aWZhY3QubWV0YS5zcGVjLmZlYXR1cmVzIGFuZCBvdXRwdXRfdmVjdG9yX25hbWU6CiAgICAgICAgIyBTZWxlY3RpbmcgdGhlIHRvcCBLIGZlYXR1cmVzIGZyb20gb3VyIHRvcCBmZWF0dXJlIGRhdGFmcmFtZQogICAgICAgIHNlbGVjdGVkX2ZlYXR1cmVzID0gcmVzdWx0X21hdHJpeF9kZi5oZWFkKGspLmluZGV4CgogICAgICAgICMgTWF0Y2ggdGhlIHNlbGVjdGVkIGZlYXR1cmUgbmFtZXMgdG8gdGhlIEZTIEZlYXR1cmUgYW5ub3RhdGlvbnMKICAgICAgICBtYXRjaGVkX3NlbGVjdGlvbnMgPSBbCiAgICAgICAgICAgIGZlYXR1cmUKICAgICAgICAgICAgZm9yIGZlYXR1cmUgaW4gbGlzdChkZl9hcnRpZmFjdC5tZXRhLnNwZWMuZmVhdHVyZXMpCiAgICAgICAgICAgIGZvciBzZWxlY3RlZCBpbiBsaXN0KHNlbGVjdGVkX2ZlYXR1cmVzKQogICAgICAgICAgICBpZiBmZWF0dXJlLmVuZHN3aXRoKHNlbGVjdGVkKQogICAgICAgIF0KCiAgICAgICAgIyBEZWZpbmluZyBvdXIgbmV3IGZlYXR1cmUgdmVjdG9yCiAgICAgICAgdG9wX2ZlYXR1cmVzX2Z2ID0gZnMuRmVhdHVyZVZlY3RvcigKICAgICAgICAgICAgb3V0cHV0X3ZlY3Rvcl9uYW1lLAogICAgICAgICAgICBtYXRjaGVkX3NlbGVjdGlvbnMsCiAgICAgICAgICAgIGxhYmVsX2ZlYXR1cmU9ImxhYmVscy5sYWJlbCIsCiAgICAgICAgICAgIGRlc2NyaXB0aW9uPSJmZWF0dXJlIHZlY3RvciBjb21wb3NlZCBzdHJpY3RseSBvZiBvdXIgdG9wIGZlYXR1cmVzIiwKICAgICAgICApCgogICAgICAgICMgU2F2aW5nCiAgICAgICAgdG9wX2ZlYXR1cmVzX2Z2LnNhdmUoKQogICAgICAgIHRvcF9mZWF0dXJlc19mdi5nZXRfb2ZmbGluZV9mZWF0dXJlcyh0YXJnZXQ9UGFycXVldFRhcmdldCgpKQoKICAgICAgICAjIExvZ2dpbmcgb3VyIG5ldyBmZWF0dXJlIHZlY3RvciBVUkkKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHQoInRvcF9mZWF0dXJlc192ZWN0b3IiLCB0b3BfZmVhdHVyZXNfZnYudXJpKQo=
    code_origin: ''
  description: Select features through multiple Statistical and Model filters
  default_handler: feature_selection
kind: job
metadata:
  categories:
  - data-preparation
  - machine-learning
  name: feature-selection
  tag: ''
verbose: false