Batch Inference V2
Contents
Batch Inference V2#
A function for inferring given input through a given model while producing a Result Set and applying monitoring analysis.
In this notebook we will go over the function’s docs and outputs and see an end-to-end example of running it.
Documentation
Results Prediction
End-to-end Demo
Data Drift Analysis
1. Documentation#
Perform a prediction on a given dataset with the given model. Using the default histogram data drift application, can perform drift analysis between the sample set
statistics stored in the model to the current input data. The drift rule in this case is the value per-feature mean of the TVD
and Hellinger scores. When §, this function
either creates or update an existing model endpoint record (depends on the provided endpoint_id
).
At the moment, this function is supported for mlrun>=1.5.0
versions.
1.1. Parameters:#
1.1.1 Batch Infer Parameters:#
context:
mlrun.MLClientCtx
An MLRun context.
dataset:
Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]
The dataset to infer through the model.
Can be passed in
inputs
as a dataset artifact / Feature vector URI.Or, in
parameters
as a list, dictionary or numpy array.
model_path:
Union[str, mlrun.DataItem]
Model store uri (should start with store://). Provided as an input (DataItem). To generate a valid model store URI, please log the model before running this function. If
endpoint_id
of existing model endpoint is provided, make sure that it has a similar model store path, otherwise the drift analysis won’t be triggered.drop_columns:
Union[str, List[str], int, List[int]]
=None
A string / integer or a list of strings / integers that represent the column names / indices to drop. When the dataset is a list or a numpy array this parameter must be represented by integers.
label_columns:
Union[str, List[str]]
=None
The target label(s) of the column(s) in the dataset. These names will be used as the column names for the predictions. The label column can be accessed from the model object, or the feature vector provided if available. The default name is
"predicted_label_i"
for thei
column.feature_columns:
Union[str, List[str]]
=None
List of feature columns that will be used to build the dataframe when dataset is from type list or numpy array.
log_result_set:
str
=True
Whether to log the result set - a DataFrame of the given inputs concatenated with the predictions. Defaulted to
True
.result_set_name:
str
="prediction"
The db key to set name of the prediction result and the filename. Defaulted to
"prediction"
.batch_id:
str
=None
The ID of the given batch (inference dataset). If
None
, it will be generated. Will be logged as a result of the run.artifacts_tag:
str
=""
Tag to use for all the artifacts resulted from the function. Defaulted to no tag.
1.1.2 Drift Analysis Parameters:#
perform_drift_analysis:
bool
=None
Whether to perform drift analysis between the sample set of the model object to the dataset given. By default, None, which means it will perform drift analysis if the model already has feature stats that are considered as a reference sample set. Performing drift analysis on a new endpoint id will generate a new model endpoint record.
endpoint_id:
str
=""
Model endpoint unique ID. If
perform_drift_analysis
was set, the endpoint_id will be used either to perform the analysis on existing model endpoint or to generate a new model endpoint record.
1.1.3 New Model Endpoint Parameters:#
model_endpoint_name:
str
="batch-infer"
If a new model endpoint is generated, the model name will be presented under this endpoint.
model_endpoint_sample_set:
Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]
=None
A sample dataset to give to compare the inputs in the drift analysis. Can be provided as an input or as a parameter. The default chosen sample set will always be the one who is set in the model artifact itself.
1.2. Outputs#
The outputs are split to two actions the functions can perform:
Results Prediction - Will log:
A dataset artifact named by the
result_set_name
parameter.A
str
result named"batch_id"
of the given / generated batch ID.
Data Drift Analysis - Will log:
A
plotly
artifact named"data_drift_table"
with a visualization of the drifts results and histograms.A json artifact named
"features_drift_results"
with all the features metric values.
For more details, see the next chapters.
2. Results Prediction#
The result set is a concatenated dataset of the inputs ($X$) provided and the predictions ($Y$) yielded by the model, so it will be $X | Y$.
For example, if the dataset
given as inputs was:
x1 |
x2 |
x3 |
x4 |
x5 |
---|---|---|---|---|
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
And the outputs yielded by the model’s prediction was:
y1 |
y2 |
---|---|
… |
… |
… |
… |
… |
… |
Then the result set will be:
x1 |
x2 |
x3 |
x4 |
x5 |
y1 |
y2 |
---|---|---|---|---|---|---|
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
In case the parameter log_result_set
is True
, the outputs of the results prediction will be:
The result set as described above.
The batch ID result -
batch_id
:str
- a hashing result that is given by the user or generated randomly in case it was not provided to represent the batch that was being inferred.{ "batch_id": "884a0cb00d8ae16d132dd8259aac29aa78f50a9245d0e4bd58cfbf77", }
3. End-to-end Demo#
We will see an end-to-end example that follows the steps below:
Generate data.
Train a model.
Infer data through the model using
batch_predict
and review the outputs.
3.1. Code review#
We are using a very simple example of training a decision tree on a binary classification problem. For that we wrote two functions:
generate_data
- Generate a binary classification data. The data will be split into a training set and data for prediction. The data for prediction will be drifted in half of its features to showcase the plot later on.train
- Train a decision tree classifier on a given data.
import mlrun
# Create MLRun project
project_name = "batch-infer-demo"
project = mlrun.get_or_create_project(project_name, context="./")
> 2024-10-08 10:23:13,060 [info] Loading project from path: {"path":"./","project_name":"batch-infer-demo","user_project":false}
> 2024-10-08 10:23:28,490 [info] Project loaded successfully: {"path":"./","project_name":"batch-infer-demo","stored_in_db":true}
# mlrun: start-code
# upload environment variables from env file if exists
import os
# Specify path
path = "/tmp/examples_ci.env"
if os.path.exists(path):
env_dict = mlrun.set_env_from_file(path, return_dict=True)
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
from mlrun.frameworks.sklearn import apply_mlrun
def generate_data(n_samples: int = 5000, n_features: int = 20):
# Generate a classification data:
x, y = make_classification(
n_samples=n_samples, n_features=n_features, n_classes=2
)
# Split the data into a training set and a prediction set:
x_train, x_prediction = x[: n_samples // 2], x[n_samples // 2 :]
y_train = y[: n_samples // 2]
# Randomly drift some features:
x_prediction += (
np.random.uniform(low=2, high=4, size=x_train.shape) *
np.random.randint(low=0, high=2, size=x_train.shape[1], dtype=int)
)
# Initialize dataframes:
features = [f"feature_{i}" for i in range(n_features)]
training_set = pd.DataFrame(data=x_train, columns=features)
training_set.insert(
loc=n_features, column="label", value=y_train, allow_duplicates=True
)
prediction_set = pd.DataFrame(data=x_prediction, columns=features)
return training_set, prediction_set
def train(training_set: pd.DataFrame):
# Get the data into x, y:
labels = pd.DataFrame(training_set["label"])
training_set.drop(columns=["label"], inplace=True)
# Initialize a model:
model = DecisionTreeClassifier()
# Apply MLRun:
apply_mlrun(model=model, model_name="model")
# Train:
model.fit(training_set, labels)
# mlrun: end-code
3.2. Run the Example with MLRun#
First, we will prepare our MLRun functions:
We will use
mlrun.code_to_function
to turn this demo notebook into an MLRun function we can run.We will use
mlrun.import_function
to import thebatch_predict
function .
# Create an MLRun function to run the notebook:
demo_function = mlrun.code_to_function(name="batch-inference-demo", kind="job")
# Import the `batch_inference_v2` function from the functions hub:
batch_inference_function = mlrun.import_function('hub://batch_inference_v2')
# you can import the function from the current directory as well:
# batch_inference_function = mlrun.import_function("function.yaml")
Now, we will follow the demo steps as discussed above:
# 1. Generate data:
generate_data_run = demo_function.run(
handler="generate_data",
returns=["training_set : dataset", "prediction_set : dataset"],
)
# 2. Train a model:
train_run = demo_function.run(
handler="train",
inputs={"training_set": generate_data_run.outputs["training_set"]},
)
# 3. Perform batch prediction:
batch_inference_run = batch_inference_function.run(
handler="infer",
inputs={"dataset": generate_data_run.outputs["prediction_set"]},
params={
"model_path": train_run.outputs["model"],
"label_columns": "label",
"perform_drift_analysis": False,
},
)
> 2024-10-08 10:23:40,584 [error] error getting build status: details: MLRunNotFoundError('Function tag not found batch-infer-demo/batch-inference-demo'), caused by: 404 Client Error: Not Found for url: http://mlrun-api:8080/api/v1/build/status?name=batch-inference-demo&project=batch-infer-demo&tag=&logs=no&offset=0&last_log_timestamp=0.0&verbose=no
> 2024-10-08 10:23:40,586 [info] Storing function: {"db":"http://mlrun-api:8080","name":"batch-inference-demo-generate-data","uid":"4f68ba3fd9084e3e941ab3872ceb3635"}
> 2024-10-08 10:23:40,881 [info] Job is running in the background, pod: batch-inference-demo-generate-data-52w8s
> 2024-10-08 10:23:46,954 [info] To track results use the CLI: {"info_cmd":"mlrun get run 4f68ba3fd9084e3e941ab3872ceb3635 -p batch-infer-demo","logs_cmd":"mlrun logs 4f68ba3fd9084e3e941ab3872ceb3635 -p batch-infer-demo"}
> 2024-10-08 10:23:46,954 [info] Or click for UI: {"ui_url":"https://dashboard.default-tenant.app.vmdev57.lab.iguazeng.com/mlprojects/batch-infer-demo/jobs/monitor/4f68ba3fd9084e3e941ab3872ceb3635/overview"}
> 2024-10-08 10:23:46,955 [info] Run execution finished: {"name":"batch-inference-demo-generate-data","status":"completed"}
project | uid | iter | start | state | kind | name | labels | inputs | parameters | results | artifacts |
---|---|---|---|---|---|---|---|---|---|---|---|
batch-infer-demo | 0 | Oct 08 10:23:44 | completed | run | batch-inference-demo-generate-data | v3io_user=eyald kind=job owner=eyald mlrun/client_version=1.7.0-rc51 mlrun/client_python_version=3.9.18 host=batch-inference-demo-generate-data-52w8s |
training_set prediction_set |
> 2024-10-08 10:23:52,384 [info] Run execution finished: {"name":"batch-inference-demo-generate-data","status":"completed"}
> 2024-10-08 10:23:52,434 [info] Storing function: {"db":"http://mlrun-api:8080","name":"batch-inference-demo-train","uid":"1102e4aea9424149837a81aa214b9489"}
> 2024-10-08 10:23:52,714 [info] Job is running in the background, pod: batch-inference-demo-train-ldclf
> 2024-10-08 10:23:58,683 [info] To track results use the CLI: {"info_cmd":"mlrun get run 1102e4aea9424149837a81aa214b9489 -p batch-infer-demo","logs_cmd":"mlrun logs 1102e4aea9424149837a81aa214b9489 -p batch-infer-demo"}
> 2024-10-08 10:23:58,684 [info] Or click for UI: {"ui_url":"https://dashboard.default-tenant.app.vmdev57.lab.iguazeng.com/mlprojects/batch-infer-demo/jobs/monitor/1102e4aea9424149837a81aa214b9489/overview"}
> 2024-10-08 10:23:58,684 [info] Run execution finished: {"name":"batch-inference-demo-train","status":"completed"}
project | uid | iter | start | state | kind | name | labels | inputs | parameters | results | artifacts |
---|---|---|---|---|---|---|---|---|---|---|---|
batch-infer-demo | 0 | Oct 08 10:23:56 | completed | run | batch-inference-demo-train | v3io_user=eyald kind=job owner=eyald mlrun/client_version=1.7.0-rc51 mlrun/client_python_version=3.9.18 host=batch-inference-demo-train-ldclf |
training_set |
model |
> 2024-10-08 10:24:01,923 [info] Run execution finished: {"name":"batch-inference-demo-train","status":"completed"}
> 2024-10-08 10:24:01,953 [info] Storing function: {"db":"http://mlrun-api:8080","name":"batch-inference-v2-infer","uid":"27dd151299ff42bc9301ed268bab8b5b"}
> 2024-10-08 10:24:02,241 [info] Job is running in the background, pod: batch-inference-v2-infer-lt4w9
> 2024-10-08 10:24:06,348 [info] Loading model...
> 2024-10-08 10:24:07,569 [info] Loading data...
> 2024-10-08 10:24:07,631 [info] Calculating prediction...
> 2024-10-08 10:24:07,636 [info] Logging result set (x | prediction)...
> 2024-10-08 10:24:08,468 [info] To track results use the CLI: {"info_cmd":"mlrun get run 27dd151299ff42bc9301ed268bab8b5b -p batch-infer-demo","logs_cmd":"mlrun logs 27dd151299ff42bc9301ed268bab8b5b -p batch-infer-demo"}
> 2024-10-08 10:24:08,469 [info] Or click for UI: {"ui_url":"https://dashboard.default-tenant.app.vmdev57.lab.iguazeng.com/mlprojects/batch-infer-demo/jobs/monitor/27dd151299ff42bc9301ed268bab8b5b/overview"}
> 2024-10-08 10:24:08,469 [info] Run execution finished: {"name":"batch-inference-v2-infer","status":"completed"}
project | uid | iter | start | state | kind | name | labels | inputs | parameters | results | artifacts |
---|---|---|---|---|---|---|---|---|---|---|---|
batch-infer-demo | 0 | Oct 08 10:24:06 | completed | run | batch-inference-v2-infer | v3io_user=eyald kind=job owner=eyald mlrun/client_version=1.7.0-rc51 mlrun/client_python_version=3.9.18 host=batch-inference-v2-infer-lt4w9 |
dataset |
model_path=store://models/batch-infer-demo/model:latest@1102e4aea9424149837a81aa214b9489 label_columns=label perform_drift_analysis=False |
batch_id=bdf589be041d04464671f41842278989c9f1ca72dcd5e3ed5cdf5495 |
prediction |
> 2024-10-08 10:24:12,530 [info] Run execution finished: {"name":"batch-inference-v2-infer","status":"completed"}
3.3. Review Outputs#
We will review the outputs as explained in the notebook above.
3.3.1. Results Prediction#
First we will showcase the Result Set. As we didn’t send any name, it’s default name will be "prediction"
:
batch_inference_run.artifact("prediction").as_df()
feature_0 | feature_1 | feature_2 | feature_3 | feature_4 | feature_5 | feature_6 | feature_7 | feature_8 | feature_9 | ... | feature_11 | feature_12 | feature_13 | feature_14 | feature_15 | feature_16 | feature_17 | feature_18 | feature_19 | label | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6.301344 | 0.270723 | 0.810890 | 1.916672 | 1.480180 | -1.111209 | 3.623056 | 2.151706 | -0.581654 | 0.469363 | ... | 1.162767 | 1.631004 | -0.382130 | 1.307247 | -0.851273 | 3.321264 | 0.697387 | 2.381824 | -0.070941 | 1 |
1 | 1.482197 | -1.242443 | 0.837535 | 2.904502 | -1.605309 | 0.632422 | 2.955928 | -0.693749 | -0.326387 | -0.897179 | ... | 4.941789 | 4.033131 | -0.009700 | -0.585573 | -1.503230 | 1.074927 | 0.803923 | 3.804727 | -0.028967 | 0 |
2 | 3.493216 | 0.731723 | -2.769300 | 1.533892 | -1.341591 | 2.544158 | 2.855936 | 0.826364 | -1.093561 | 0.303124 | ... | 0.848919 | 1.783395 | -0.644753 | 1.994629 | 2.166190 | 4.072446 | 2.121466 | 3.146668 | 1.574255 | 1 |
3 | 1.243322 | -1.185999 | 1.510705 | 2.280017 | -0.139123 | -1.333367 | 4.703854 | -1.238155 | 0.659352 | -0.514514 | ... | 2.731269 | 3.631489 | 0.175608 | 0.754273 | -0.783163 | 4.356327 | 0.350378 | 3.347941 | -1.111401 | 1 |
4 | 3.368511 | 0.294880 | 1.098486 | 2.401271 | 1.178792 | 0.050650 | 1.631508 | 0.915017 | 0.002918 | -0.217509 | ... | 3.671178 | 2.873755 | 0.352395 | -1.290841 | -0.773709 | 1.938640 | 0.776364 | 3.676751 | 0.867656 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2495 | 2.006662 | -0.377155 | -0.674967 | 3.425157 | 0.774268 | -0.288493 | 3.312510 | -0.935283 | 0.898680 | 1.028747 | ... | 1.511337 | 2.026637 | -1.371283 | -0.162678 | 2.033294 | 0.387519 | -1.778998 | 4.347185 | 0.066542 | 0 |
2496 | 4.624801 | -0.435007 | -1.340297 | 3.709764 | 1.303919 | -0.913823 | 2.927538 | 1.808688 | -0.461729 | -0.309318 | ... | 4.194667 | 0.308783 | -0.455863 | 0.333040 | 0.302472 | 0.571399 | -0.664472 | 3.399752 | 1.068366 | 0 |
2497 | 5.299738 | 1.273677 | -1.801943 | 3.892334 | 1.255739 | 0.095366 | 2.051728 | 1.577475 | -0.348716 | 0.714247 | ... | 2.760161 | 4.798985 | 0.862472 | -1.737803 | 1.263144 | 3.620031 | -0.426575 | 3.938336 | -0.700078 | 1 |
2498 | 0.866703 | -1.056071 | 1.670582 | 2.334009 | -1.333572 | -0.048753 | 2.157949 | -0.995259 | -0.026593 | 1.162342 | ... | 2.564957 | 2.874556 | 0.443551 | 1.508644 | -1.702975 | 4.317128 | -1.488132 | 3.223802 | 0.036243 | 0 |
2499 | 2.827924 | -0.391928 | 0.139046 | 0.273091 | -1.208622 | -0.401865 | 2.850371 | 0.857199 | -1.050983 | 1.923212 | ... | 4.897142 | 2.617614 | 1.056777 | 1.459342 | -0.002913 | 2.095362 | 0.309448 | 3.965130 | -0.366275 | 1 |
2500 rows × 21 columns
4. Data Drift Analysis#
The data drift analysis in this demo is based on the histogram data drift application, and it is done per feature using two distance measure metrics for probability distributions.
Let us mark our sample set as $S$ and our inputs as $I$. We will look at one feature $x$ out of $n$ features. Assuming the histograms of feature $x$ is split into 20 bins: $b_1,b_2,…,b_{20}$, we will match the feature $x$ histogram of the inputs $I$ ($x_I$) into the same bins (meaning to $x_S$) and compare their distributions using:
Total Variance Distance: $TVD(x_S,x_I) = \frac{1}{2}\sum_{b_1}^{b_{20}} {|x_S - x_I|}$
Hellinger Distance: $H(x_S,x_I) = \sqrt{1-{\sum_{b_1}^{b_{20}}\sqrt{x_S \cdot x_I}}}$
Our rule then is calculating for each $x\in S: \frac{H(x_S,x_I)+TVD(x_S,x_I)}{2} < $ given thresholds.
The outputs of the analysis will be:
Drift table plot - The results are presented in a
plotly
table artifact named"drift_table_plot"
that shows each feature’s statistics and its TVD, Hellinger and KLD (Kullback–Leibler divergence) results as follows:
Count |
Mean |
Std |
Min |
Max |
Tvd |
Hellinger |
Kld |
Histograms |
||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample |
Input |
Sample |
Input |
Sample |
Input |
Sample |
Input |
Sample |
Input |
|||||
x1 |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
x2 |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
x3 |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
… |
Features drift results - A rule metric per feature dictionary is saved in a json file named
"features_drift_results"
where each key is a feature and its value is the feature’s metric value:Dict[str, float]
{ "x1": 0.12, "x2": 0.345, "x3": 0.00678, ... }
In addition, two results are being added to summarize the drift analysis:
drift_status
:bool
- A boolean value indicating whether a drift was found.drift_metric
:float
- The mean of all the features drift metric value (the rule above): for $n$ features and metric rule $M(x_S,x_I)=\frac{H(x_S,x_I)+TVD(x_S,x_I)}{2}$,drift_metric
$=\frac{1}{n}\sum_{x\in S}M(x_S,x_I)$
{ "drift_status": True, "drift_metric": 0.81234 }
4.1. Enable Model Monitoring#
To calculate data drift and generate artifact results, we first need to define the model monitoring configuration. Next, we will deploy the model monitoring infrastructure, which includes the default histogram-based data drift application.
In this demo, we will use V3IO resources, but you can also provide your own. For more information on supported resources, please visit https://docs.mlrun.org/en/latest/model-monitoring/index.html#selecting-the-streaming-and-tsdb-platforms
4.1.1 Set credentials and deploy model monitoring infrastructure#
project.set_model_monitoring_credentials(
endpoint_store_connection="v3io",
tsdb_connection="v3io",
stream_path="v3io")
# Deploy model monitoring infrastructure
project.enable_model_monitoring(wait_for_deployment=True, base_period=1)
> 2024-10-08 10:24:25,053 [warning] enable_model_monitoring: 'base_period' < 10 minutes is not supported in production environments: {"project":"batch-infer-demo"}
2024-10-08 10:24:30 (info) Deploying function
2024-10-08 10:24:30 (info) Building
2024-10-08 10:24:30 (info) Staging files and preparing base images
2024-10-08 10:24:30 (warn) Using user provided base image, runtime interpreter version is provided by the base image
2024-10-08 10:24:30 (info) Building processor image
2024-10-08 10:26:01 (info) Build complete
2024-10-08 10:26:11 (info) Function deploy complete
2024-10-08 10:24:25 (info) Deploying function
2024-10-08 10:24:25 (info) Building
2024-10-08 10:24:25 (info) Staging files and preparing base images
2024-10-08 10:24:25 (warn) Using user provided base image, runtime interpreter version is provided by the base image
2024-10-08 10:24:25 (info) Building processor image
2024-10-08 10:26:06 (info) Build complete
2024-10-08 10:27:07 (info) Function deploy complete
2024-10-08 10:24:26 (info) Deploying function
2024-10-08 10:24:26 (info) Building
2024-10-08 10:24:28 (info) Staging files and preparing base images
2024-10-08 10:24:28 (warn) Using user provided base image, runtime interpreter version is provided by the base image
2024-10-08 10:24:28 (info) Building processor image
2024-10-08 10:26:01 (info) Build complete
2024-10-08 10:26:10 (info) Function deploy complete
2024-10-08 10:24:32 (info) Deploying function
2024-10-08 10:24:32 (info) Building
2024-10-08 10:24:32 (info) Staging files and preparing base images
2024-10-08 10:24:32 (warn) Using user provided base image, runtime interpreter version is provided by the base image
2024-10-08 10:24:32 (info) Building processor image
2024-10-08 10:26:01 (info) Build complete
2024-10-08 10:26:12 (info) Function deploy complete
4.1.2 Rerun batch infer with model monitoring#
# Perform batch prediction, this time enable drift analysis
batch_inference_run = batch_inference_function.run(
handler="infer",
inputs={"dataset": generate_data_run.outputs["prediction_set"]},
params={
"model_path": train_run.outputs["model"],
"label_columns": "label",
"perform_drift_analysis": True,
"model_endpoint_name": "my_cool_endpoint" # a display name for the model endpoint
},
)
> 2024-10-08 10:27:29,954 [info] Storing function: {"db":"http://mlrun-api:8080","name":"batch-inference-v2-infer","uid":"ca26cf51bb984354aa2b6c42540af1f7"}
> 2024-10-08 10:27:30,317 [info] Job is running in the background, pod: batch-inference-v2-infer-qmszk
> 2024-10-08 10:27:34,169 [info] Loading model...
> 2024-10-08 10:27:35,237 [info] Loading data...
> 2024-10-08 10:27:35,277 [info] Calculating prediction...
> 2024-10-08 10:27:35,281 [info] Logging result set (x | prediction)...
> 2024-10-08 10:27:35,773 [info] Performing drift analysis...
> 2024-10-08 10:27:37,335 [info] Bumping model endpoint last request time (EP without serving): {"bumped_last_request":"2024-10-08T10:29:35.991331+00:00","current_request":"2024-10-08T10:27:35.991331+00:00","endpoint_id":"cc285767a39c0455d050a8c0d7b0421c19394aba","last_request":"2024-10-08T10:27:35.806824+00:00","project":"batch-infer-demo"}
> 2024-10-08 10:27:37,586 [info] To track results use the CLI: {"info_cmd":"mlrun get run ca26cf51bb984354aa2b6c42540af1f7 -p batch-infer-demo","logs_cmd":"mlrun logs ca26cf51bb984354aa2b6c42540af1f7 -p batch-infer-demo"}
> 2024-10-08 10:27:37,586 [info] Or click for UI: {"ui_url":"https://dashboard.default-tenant.app.vmdev57.lab.iguazeng.com/mlprojects/batch-infer-demo/jobs/monitor/ca26cf51bb984354aa2b6c42540af1f7/overview"}
> 2024-10-08 10:27:37,587 [info] Run execution finished: {"name":"batch-inference-v2-infer","status":"completed"}
project | uid | iter | start | state | kind | name | labels | inputs | parameters | results | artifacts |
---|---|---|---|---|---|---|---|---|---|---|---|
batch-infer-demo | 0 | Oct 08 10:27:34 | completed | run | batch-inference-v2-infer | v3io_user=eyald kind=job owner=eyald mlrun/client_version=1.7.0-rc51 mlrun/client_python_version=3.9.18 host=batch-inference-v2-infer-qmszk |
dataset |
model_path=store://models/batch-infer-demo/model:latest@1102e4aea9424149837a81aa214b9489 label_columns=label perform_drift_analysis=True model_endpoint_name=my_cool_endpoint |
batch_id=286df90faa9d3edf774974db7b6d601c5412caad635bccb56e7e8598 |
prediction |
> 2024-10-08 10:27:41,580 [info] Run execution finished: {"name":"batch-inference-v2-infer","status":"completed"}
4.2 Overview drift results#
Please note that all results are available in the UI, including time-based metrics and drift results for each model endpoint.
4.2.1 List artifacts#
# Wait until the monitoring application is triggered
import time
time.sleep(60)
# Retrieve the model endpoint
from mlrun.model_monitoring.api import get_or_create_model_endpoint
endpoint = get_or_create_model_endpoint(project=project.name, model_endpoint_name="my_cool_endpoint")
# Validate that the artifacts were logged in the project
artifacts = project.list_artifacts(
labels={
"mlrun/producer-type": "model-monitoring-app",
"mlrun/app-name": "histogram-data-drift",
"mlrun/endpoint-id": endpoint.metadata.uid,
}
)
artifacts
[{'kind': 'plotly',
'metadata': {'key': 'drift_table_plot',
'project': 'batch-infer-demo',
'iter': 0,
'tree': '0f9bc30c-e223-4161-a4b3-7ea93a2b200d',
'hash': 'a9cbb5cd3532a7de394134c94d7ffabcf337e25f',
'uid': 'ffab65fdff6bfb6b1e53003f6f135a39d94933fc',
'updated': '2024-10-08 10:29:12.088626+00:00',
'labels': {'mlrun/runner-pod': 'nuclio-batch-infer-demo-histogram-data-drift-5bcfd66559-c58k5',
'mlrun/producer-type': 'model-monitoring-app',
'mlrun/app-name': 'histogram-data-drift',
'mlrun/endpoint-id': 'cc285767a39c0455d050a8c0d7b0421c19394aba'},
'created': '2024-10-08 10:29:12.088665+00:00',
'tag': 'latest'},
'spec': {'target_path': 'v3io:///projects/batch-infer-demo/artifacts/drift_table_plot.html',
'viewer': 'plotly',
'size': 4637273,
'license': '',
'producer': {'kind': 'project',
'name': 'batch-infer-demo',
'tag': '0f9bc30c-e223-4161-a4b3-7ea93a2b200d',
'owner': 'eyald'},
'format': 'html',
'db_key': 'drift_table_plot'},
'status': {'state': 'created'},
'project': 'batch-infer-demo'},
{'kind': 'artifact',
'metadata': {'key': 'features_drift_results',
'project': 'batch-infer-demo',
'iter': 0,
'tree': '8636f959-4738-4c36-9e86-1fbb2a30cb7c',
'hash': '8021f8f05337970dfaf19803f7c106efca3cefae',
'uid': 'a0a361f92fb9aa0d70bf3c0b8373eeff97b8d86a',
'updated': '2024-10-08 10:29:10.747465+00:00',
'labels': {'mlrun/runner-pod': 'nuclio-batch-infer-demo-histogram-data-drift-5bcfd66559-c58k5',
'mlrun/producer-type': 'model-monitoring-app',
'mlrun/app-name': 'histogram-data-drift',
'mlrun/endpoint-id': 'cc285767a39c0455d050a8c0d7b0421c19394aba'},
'created': '2024-10-08 10:29:10.747499+00:00',
'tag': 'latest'},
'spec': {'target_path': 'v3io:///projects/batch-infer-demo/artifacts/features_drift_results.json',
'size': 530,
'license': '',
'producer': {'kind': 'project',
'name': 'batch-infer-demo',
'tag': '8636f959-4738-4c36-9e86-1fbb2a30cb7c',
'owner': 'eyald'},
'format': 'json',
'db_key': 'features_drift_results'},
'status': {'state': 'created'},
'project': 'batch-infer-demo'}]
4.2.2 Plot artifacts#
# Plot the drift results per feature and label
features_drift_results_artifact = project.get_artifact("features_drift_results")
features_drift_results_artifact.to_dataitem().show()
<IPython.core.display.JSON object>
# Plot the drift table artifact
drift_table_plot_artifact = project.get_artifact("drift_table_plot")
drift_table_plot_artifact.to_dataitem().show()